Products from Dimethyl Hex-2-en-1-yne-1,6-dioate and Dimethyl Penta-2,3-diene-1,5-dioate with Compounds possessing Two Adjacent Nucleophilic Centres

By R. Morrin Acheson * and John D. Wallis, Department of Biochemistry, South Parks Road, Oxford OX1 3QU

Abstract

Thioureas and thioamides were found to add via sulphur mainly to position 5 of dimethyl hex-2-en-4-yne-1,6dioate; often this was followed by cyclisation to give γ-lactams. In some cases cis-addition was observed as well as trans-addition, even in methanol. Imidazoline-2-thione and benzimidazole-2-thione also reacted at position 4 to give fused thiazinone derivatives. 2-Amino-benzothiazole, -thiazole, and -pyridine all added via the ring nitrogen to position 4, and subsequent cyclisation gave fused pyrimidones. 1,2-Diaminobenzene and 2-aminobenzenethiol reacted like the thioureas at position 5 , but addition to position 4 was followed by a further Michael addition to position 3. These benzene derivatives reacted with dimethyl penta-2,3-diene-1,5-dioate to give cyclic compounds with exocyclic unsaturated ester groups. In contrast, thioureas reacted with the allene to give derivatives of methyl 4 -oxothiazin- 6 -ylacetate. Structures of the new compounds were deduced from their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r., u.v., i.r., and mass spectra.

Dimethyl hex-2-En-4-Yne-1,6-dioate (DMHD) (1) is readily prepared by dimerisation of methyl propiolate with N-methylpiperidine at $0{ }^{\circ} \mathrm{C} .{ }^{1}$ In principle, nucleophiles could add to either end of the triple bond to give E - and Z-isomers of either of the adducts (2) and (3), which could be distinguished by their ${ }^{1} \mathrm{H}$ n.m.r. spectra. Under base-catalysed conditions methoxide ion is reported to add to the 4 -position, ${ }^{2}$ while secondary amines in diethyl ether add to position $5 ;{ }^{3}$ in both cases two geometric isomers were formed. However, our preliminary examination of the ${ }^{1} \mathrm{H}$ n.m.r. spectra of reaction mixtures from diethylamine and DMHD in various solvents showed that nucleophilic addition never occurred exclusively to either position. Thus, while nucleophilic addition was mainly to position 5 in acetonitrile (mainly cis-addition) and methanol (mainly trans-addition), in dimethyl sulphoxide addition to

(1)

(2) $X=$ nucleophile, $Y=H$
(3) $X=H, Y=$ nucleophile

(6)

(4) $R=M e$
(5) R = Ph

(7) $X=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{Y}=\mathrm{H}$
(8) $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{CO}_{2} \mathrm{Me}$
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
positions 4 and 5 occurred to similar extents. The reactions of DMHD with a variety of compounds possessing two nucleophilic centres are now reported.
N, N^{\prime}-Dimethylthiourea with DMHD in methanol gave the cyclic compounds (4) (52%) and (6) (1.6%), which result from the addition of sulphur to position 5 and the condensation of nitrogen with the adjacent ester group. Compound (6) appears to be the first example of the cisaddition of a thiourea moiety and the associated proton to an activated acetylene. When the reaction was carried out in dry acetonitrile, a precipitate containing both isomers was obtained, with the cis-adduct predominating ($86: 14$). The assignment of these two structures is based on the strong similarity of the chemical shifts of the vinyl protons to those in trans-trans(7) and cis,trans-dimethyl muconate (8). ${ }^{4}$ In particular the central vinyl proton in the cis-adduct (6) is deshielded ($\tau 1.31$) by the nearby ester and lactam carbonyls $[c f . \tau$ 1.60 in compound (8)]. The vinyl protons of the transisomer (4) have similar chemical shifts, giving a complex spectrum even at 300 MHz .
N, N^{\prime}-Diphenylthiourea with DMHD in methanol gave the analogous trans-addition product (5) and the sulphide (10). The latter product was identified from its 300 $\mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum and a strong $(M+1)^{+}$peak (80%) in its chemical ionisation mass spectrum. Possible mechanisms for its formation are suggested in Scheme 1. Methyl propiolate formed a mixture of similar diacrylates with thioacetamide. ${ }^{5}$ trans-Addition to the cyclic thioureas (11) and (12) in methanol gave the bicyclic compounds (14) and (15). The formation of the sulphide (10) in the reaction with diphenylthiourea may be related to a slow rate of cyclisation of the $1: 1$ adduct (9) resulting from steric hindrance by the phenyl groups in the transition state. In contrast, the imidazoline-2thione (13) added to DMHD in methanol by both cisand trans-modes, giving compounds (18) and (19) as well and the adduct (17), which is formed by attack of sulphur at position 4. Only the trans-addition product (19) could be isolated by chromatography. The adduct (18) was the sole product obtained at room temperature in dry

(9)

(10)
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

Scheme 1
acetonitrile, and was recovered unchanged after refluxing for $\mathbf{l} \mathrm{h}$ in dry methanol. Its formation in methanol thus occurs directly via the zwitterion (21) and is not a result of isomerisation. The addition of imidazoline-2-thione to dimethyl acetylenedicarboxylate (DMAD) in dry acetonitrile gave only the trans-addition product. No cis-additions of thioureas to DMAD have been observed, probably because in such a structure [e.g. (20)] there would be an end-to-end interaction between the lactam and ester carbonyl groups. In the DMHD cis-addition

(11) $n=3$
(14) $n=3, \mathrm{X}=(E)-\mathrm{CH}=\mathrm{CHE}$
(12) $n=4$
(15) $n=4, \mathrm{X}=(E)-\mathrm{CH}=\mathrm{CHE}$
(13) $n=2$
$(16) n=4, X=\mathrm{CO}_{2} \mathrm{Me}$

(17)
(18) $X=H, Y=(E)-\mathrm{CH}=\mathrm{CHE}$
(19) $X=(E)-C H=C H E, Y=H$
(20) $X=\mathrm{H}, Y=\mathrm{CO}_{2} \mathrm{Me}$

$$
\mathrm{E}=\mathrm{CO}_{\mathbf{2}} \mathrm{Me}
$$

products this is replaced by a lactam-olefinic proton interaction which is sterically and electronically more favourable.
The chemical shifts and coupling constants between the vinyl protons in the adduct (18), measured from a 300 MHz spectrum, are in close agreement with those
from the cis,trans-muconate (8). An n.O.e. experiment suggests that the butadiene residue in compound (18) is co-planar. Irradiation of the $6-\mathrm{H}$ signal enhanced that from $8-\mathrm{H}$ but not that from $7-\mathrm{H}$, and irradiation of the $8-\mathrm{H}$ signal enhanced that from $6-\mathrm{H}$. Had the double bonds been orthogonal the $7-\mathrm{H}$ signal should have been affected at least as much as 8 -H. The ${ }^{13} \mathrm{C}$ n.m.r. spectrum of the adduct (15) was similar to that of the corresponding DMAD adduct (16) ${ }^{6}$ except that $\mathrm{C}-5$ was less deshielded ($\delta \mathbf{1 3 4 . 2}$, cf. δ 149.3) because of the weaker electron-withdrawing effect of the vinyl group compared with that of the ester group. N-Methylthiourea reacted with DMHD in methanol to give compound (22) and a little of the corresponding cis-adduct. The alternative structure (23) is excluded since C-2 is not strongly

deshielded in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum [cf. $\mathrm{C}-2$ in (24) ${ }^{6,7} \delta$ 175.9) and is more in agreement with that of structure (15). The possibility of an exocyclic methylimino-group is clearly excluded by the chemical shift of the N-methyl carbon which is 10 p.p.m. upfield of the expected position ($\delta 39.0$). ${ }^{6}$ The highly insoluble precipitate from thiourea and DMHD in methanol was identified by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy as being a mixture of cis- and transaddition products in the ratio $\mathbf{1 : 2}$. The mass spectra of the analogous adducts (4), (13), (14), (15), and (17) all show molecular ions, with the loss of an ester group as one possible fragmentation. All these compounds have strong peaks at $m / e 111$ in their spectra which are possibly due to the aromatic ion (25) (Scheme 2). The diphenyl derivative (5) has a base peak corresponding to N, N^{\prime}-diphenylcarbodi-imide which is consistent with this proposal.

Benzimidazole-2-thione reacted with DMHD in methanol to give the cyclic compound (26), derived by initial attack at position 4 on DMHD, and the $1: 1$-molar adduct (28) derived by attack at position 5. The
spectra of compound (26) showed a deshielded aromatic proton ($\tau 1.54-1.64$) and a high lactam carbonyl stretching frequency ($1708 \mathrm{~cm}^{-1}$), similar to those of compound $(27)^{6}\left(\tau 1.43-1.60 ; 1703 \mathrm{~cm}^{-1}\right)$. The 300 MHz spectrum of the other adduct (28) was consistent

(25)

Scheme 2
with trans-addition, but all the vinyl protons were deshielded relative to the trans-thiourea adducts and the equivalent muconate. Refluxing this adduct in dry acetonitrile overnight did not affect ring closure to compound (29), in contrast to the reaction of benzimidazole2 -thione with DMAD which, under these conditions, gives product (30). ${ }^{6}$ DMHD in methanol with 2 thiohydantoin and tetramethylthiourea gave a tar and a trace of compound (10), respectively.

Ethanethioamide and DMHD in methanol gave compound (31), whose ${ }^{13} \mathrm{C}$ n.m.r. spectrum showed a quaternary carbon at $\delta 97.0$ and a strong similarity to that of the corresponding adduct (32) from DMAD. ${ }^{6}$ The reaction in acetonitrile gave a precipitate which tarred on isolation. 2-Aminobenzenethioamide and DMHD gave compound (33) which showed typical signals from primary amine bonds in its i.r. spectrum, and an absorption at 478 nm in the u.v. spectrum as observed for the DMAD adduct (34). ${ }^{6}$ The mass spectrum of compound (33) showed the molecular ion; the loss of an ester group was followed by a fragmentation similar to that shown in Scheme 2, leading to 2 -aminobenzonitrile and the thiole (25).

Pyridine-2-thione and indoline-2-thione with DMHD in methanol gave compounds (35) and (36), respectively identified from their spectra. The adduct (36), in contrast to the corresponding DMAD adduct (37) which gave a thiazino[3,2-b]benzimidazole, did not cyclise in refluxing acetic acid to yield the tricyclic derivative (38).

2-Aminobenzothiazole reacted with DMHD to give the cyclic compound (39), in which the heterocyclic nitrogen has attacked position 4 of DMHD. The lactam carbonyl stretching frequency ($1650 \mathrm{~cm}^{-1}$) and the longest wavelength u.v. maximum (302 nm) are in closer agreement with the data for compound (40) ($1640 \mathrm{~cm}^{-1}$; $301 \mathrm{~nm})^{8}$ than with those of its isomer (42) ($1675 \mathrm{~cm}^{-1}$; 339 nm), ${ }^{8}$ thus supporting the structural assignment. Furthermore, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum does not show the deshielded aromatic proton expected for structure (43).

(26) $\mathrm{X}=(\mathrm{E})-\mathrm{CH}=\mathrm{CHE}$
(27) $X=E$

(29) $\mathrm{X}=(\mathrm{E})-\mathrm{CH}=\mathrm{CHE}$
(30) $X=E$

(33) $\mathrm{X}=(\mathrm{E})-\mathrm{CH}=\mathrm{CHE}$
(34) $X=E$

(36) $\mathrm{X}=(\mathrm{E})-\mathrm{CH}=\mathrm{CHE}$

(35)
(31) $\mathrm{X}=(\mathrm{E})-\mathrm{CH}=\mathrm{CHE}$
(32) $X=E$

(38) (37) $X=E$

$$
\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}
$$

2-Aminothiazole gave the analogous adduct (44), but 2aminothiazoline only gave a tar. In their mass spectra compounds (39) and (44) show molecular ions which fragment, losing either an ester or carbon monoxide moiety. In a similar manner 2 -aminopyridine gave the pyrimidine derivative (45) which was identified primarily by the lack of a strongly deshielded aromatic proton which would be expected in the 6 -position of the alternative pyrido $[1,2-a]$ pyrimidin-4-one structure. ${ }^{9}$

1,2-Diaminobenzene gave compounds (46) and (47) with DMHD in methanol. For the amide (46), the E arrangement of the enaminic double bond is proposed since the central vinyl proton is strongly deshielded by the adjacent lactam carbonyl. The ester-carbonyl stretching frequency is very low ($1688 \mathrm{~cm}^{-1}$) suggesting strong delocalisation of electrons from the enaminic nitrogen through the diene system into the ester group. In the mass spectrum compound (46) showed a molecular ion which successively lost ' $\mathrm{CO}_{2} \mathrm{Me}$ ' and then ' $\mathrm{H}_{2} \mathrm{O}$ ' to give an ion which could have the aromatic structure (48). The isolation of this cis-addition product from a reaction in methanol suggests that isomerism to the trans-
addition product is much more difficult than for the equivalent DMAD adduct, since it is unlikely that the adduct (46) is the thermodynamically more stable isomer. Such isomerisations probably proceed via an imine intermediate, ${ }^{10}$ but for DMHD adducts this would

(39) $\mathrm{X}=(E)-\mathrm{CH}=\mathrm{CHE}$
(40) $X=H$
(41) $X=E$

(42) $X=H$
(43) $\mathrm{X}=(E)-\mathrm{CH}=\mathrm{CHE}$

(44)

(46)

(48)

(45)

(47)
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
involve the loss of a conjugated butadiene system. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the ester (47) shows an NH resonance ($\tau 4.02$) coupled to a single proton ($\tau 5.87, J$ 2.8 Hz), which is itself coupled ($J 6.8 \mathrm{~Hz}$) to a pair of protons. The couplings were confirmed by doubleresonance experiments. The other NH resonance ($\tau-0.07$) is not exchanged on shaking with $\mathrm{D}_{2} \mathrm{O}$, suggesting the presence of a hydrogen bond to the adjacent ester carbonyl which has a very low stretching frequency ($1654 \mathrm{~cm}^{-1}$).

2-Aminobenzenethiol reacted with DMHD in methanol at room temperature to give compound (51) by transaddition; this compound showed absorption frequencies in its i.r. spectrum characteristic of a primary aromatic amine. On heating it cyclised to the benzothiazine (49), which precipitated from a refluxing mixture of the reactants in methanol. It did not show a low-field proton in its n.m.r. spectrum, so structure (50) is excluded. Chromatography of the filtrate also yielded

$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

(51)
(52)
the diester (52) and some tricyclic compound (53). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the thiazine (52) showed an uncoupled vinylic proton ($\tau 4.23$), an eight-line system (τ 7.49) corresponding to a diastereotopic methylene group coupled to a methine proton ($\tau 5.57$), and an uncoupled (possibly due to rapid exchange) NH proton. Compound (53) may be formed by tautomerism of the initial $1: 1$ adduct to give an allene, followed by cyclisation (shown in Scheme 3). In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, the $\mathrm{CH}_{2} \mathrm{CH}_{2}$
(3)

(53)

$$
\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}
$$

Scheme 3
resonances form an $\mathrm{A}_{2} \mathrm{~B}_{2}$ system and the 9 -proton (τ $1.60-1.90$) is deshielded by the lactam carbonyl. This last-named group shows a high stretching frequency ($1719 \mathrm{~cm}^{-1}$) in its i.r. spectrum, and in the mass spectrum the molecular ion ($\mathbf{1 0 0} \%$) loses fragments of $m / e 28$ or 59.

Dimethyl penta-2,3-diene-1,5-dioate (54), available ${ }^{11}$ from dimethyl 3 -oxopentane-1,5-dioate, reacts with nucleophiles at position 3. ${ }^{12}$ Although cis- and transadditions cannot be distinguished, two geometric isomers (55) and (56) can be produced; thus diethylamine and methanol both gave adducts like (55), while cyclohexylamine gave the other type, like (56), which in this case contains an intramolecular hydrogen bond [shown in (57)]. ${ }^{12}$

Several compounds containing two adjacent nucleo-
philic centres have now been found to give cyclic compounds of structural type (58) or (59). The former structure is preferred for the adduct (60), obtained from 1,2 -diaminobenzene, since the resonance of the β enaminic proton ($\tau 5.32$) is very similar to that of compound (47), but is quite different from that of the tricyclic

(54)

(55) $X=\mathrm{CH}_{2} \mathrm{E}, \mathrm{Y}=$ nucleophile (56) $X=$ nucleophile, $Y=\mathrm{CH}_{2} \mathrm{E}$

(57)

(59)

(58)

(60)
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
compound (41). There appears to be a hydrogen bond between the 5 -proton and the ester carbonyl since in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum one of the NH signals cannot be exchanged with $\mathrm{D}_{2} \mathrm{O}$ and the ester carbonyl stretching frequency is low ($1695 \mathrm{~cm}^{-1}$). The mass spectrum showed one major fragmentation path involving successive losses of masses 32 and 42 (possibly $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}$) from the molecular ion (83%) to give a base peak at $m / z 158$. In contrast the adduct (61), obtained from 2 -aminobenzothiazole, is assigned a structure of the same type as (59) since the β-enaminic proton signal (τ 3.72) is too low for the alternative structure (62). The lactam stretch at $\mathbf{1 6 4 2} \mathrm{cm}^{-1}$ is similar to that observed for compounds (39) and (40), supporting the postulated addition of the heterocyclic nitrogen to the allene system. The adduct from benzimidazole-2-thione has been identified as having structure (63) rather than (64) since the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of the ring system strongly resembles that of the thiazine (27); ${ }^{6}$ in particular the $\mathrm{C}-3$ resonances are closely comparable ($\delta 120.0$ and 121.3 p.p.m. respectively) while an exocyclic vinyl carbon would be expected to appear at higher field as for compound (30) ($\delta 112.9$ p.p.m.). ${ }^{6}$ Furthermore the ester carbonyl carbon resonance ($\delta 169.0$ p.p.m.) is too low for an unsaturated ester [cf. for (30), $\delta 165.7$ p.p.m.] and its stretching frequency in the i.r. spectrum ($1740 \mathrm{~cm}^{-1}$) is too high. N, N^{\prime}-Dimethylthiourea gave a similar adduct (65)
which showed an olefinic carbon resonance at $\delta 118.5$ p.p.m. and a low ester carbonyl carbon resonance (δ 169.4 p.p.m.). The carbon at the centre of the thiourea moiety resonates at $\delta 146.5$ p.p.m. in a similar position to that of the DMHD adduct (14) ($\delta 147.4$ p.p.m.). The i.r. spectrum again shows a high ester carbonyl stretching frequency ($1742 \mathrm{~cm}^{-1}$) and an amide stretching signal at $1663 \mathrm{~cm}^{-1}$.

(61)

(63)

(65) $R=M e$
(66) $R=P h$

(69)
$E=\mathrm{CO}_{2} \mathrm{Me}$

(70)
N, N^{\prime}-Diphenylthiourea gave an analogous adduct (66), though the amide stretch was at higher frequency ($1697 \mathrm{~cm}^{-1}$). In contrast methylthiourea gave the 2 methylaminothiazinone (67) which was identified by the two strongly deshielded carbons (C-2, $\delta 163.1$ and C-4, δ 168.2 p.p.m.) which are similar to those observed for the DMAD adduct (24). Thiourea gave the corresponding adduct (68) (deduced from the similarity of the ${ }^{13} \mathrm{C}$ n.m.r. spectra), but the i.r. spectrum (Nujol mull) of this compound showed a low ester stretching frequency (1710 cm^{-1}) suggesting that in the solid phase it might have structure (69). Both the solid and solution phase spectra of the previous adduct (67) suggest a saturated ester. 2-Aminobenzenethiol reacted with the allenic diester to give the benzothiazepinone (70) whose i.r. spectrum shows an unsaturated ester carbonyl stretch.

EXPERIMENTAL

Most instruments and chromatographic procedures have been described previously. ${ }^{6}$ Unless specified otherwise, i.r. spectra were measured in Nujol and u.v. spectra in dry methanol (M) or dry methanol acidified with one drop of 72% perchloric acid (A). 300 MHz N.m.r. spectra were measured on a Bruker WH 300 spectrometer. Methanol was dried with magnesium and distilled. Acetonitrile was dried with calcium hydride. Dimethyl hex-2-en-4-yne-1,6dioate (DMHD) (1) was prepared by treating methyl propiolate ${ }^{13}$ with N-methylpiperidine, and purified by sublimation on a $10-\mathrm{g}$ scale (overall yield 82%) which gave a white solid, m.p. $53-54{ }^{\circ} \mathrm{C}$ (lit., ${ }^{1} 53-54{ }^{\circ} \mathrm{C}, 88 \%$). Alternatively, the acetylene was purified by crystallisation from hexane. Dimethyl penta-2,3-diene-1,5-dioate (54) was prepared from dimethyl 3 -oxopentane-1,5-dioate ${ }^{11}(25 \%)$, b.p. $79-80^{\circ} \mathrm{C}$ at 0.12 mmHg (lit., ${ }^{11} 80^{\circ} \mathrm{C}$ at $0.1 \mathrm{mmHg} ; 26 \%$).

Reactions of DMHD (1).-(a) With $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylthiourea. DMHD (5.65 g) was added to a stirred solution of N, N^{\prime}-dimethylthiourea (3.50 g) in methanol (100 ml), the thiourea having been previously dried in vacuo. After being stirred at room temperature for 6 h , the mixture was filtered to give methyl (2E,4Z)-4-(3-methyl-2-methylimino-4-oxo-1,3-thi-azolin-5-ylidene)but-2-en-1-oate (4) ($3.21 \mathrm{~g}, 39.8 \%$), as white microneedles (from chloroform-methanol), m.p. 188-190 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.6; H, 5.0; N, 11.7. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 50.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 11.7 \%$) ; $v_{\text {max. }} 1720 \mathrm{~s}, 1660 \mathrm{~s}$, 1620 m , and $1593 \mathrm{~m} \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}$ (M) $232(\varepsilon 12500)$ and 349 $\mathrm{nm}(23900)$; $\lambda_{\text {max. }}$ (A) $242(\varepsilon 8900), 284 \mathrm{infl}$ (10600) and 327 $\mathrm{nm}(26700) ; m / e 240\left(M^{+}, 38\right), 181$ (55), 114 (29), 111 $\left(M-119^{+}, 100\right), 99(15), 83(10), 71(20)$, and 69 (17\%); $M^{*} 157.0(209 \longrightarrow 181), 136.5(240 \longrightarrow 181)$, and 62.0 $(111 \rightarrow 83)$. Further product (4) was precipitated overnight giving an overall yield of 52.0%. The reaction residue was chromatographed and a yellow band eluted with chloroform. The evaporated fraction was triturated with diethyl ether to give methyl ($2 \mathrm{E}, 4 \mathrm{E}$)-4-(3-methyl-2-methylimino-4-oxo-1,3-thiazolidin-5-ylidene)but-2-en-1-oate (6) (0.13 g, 1.6%), as white feathers (from chloroform-diethyl ether), m.p. 134-136 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.8; H, 4.8; N, 11.8 . $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 50.0 ; \mathrm{H}, 5.0 ; \mathrm{N}, 11.7 \%\right)$; $\nu_{\text {max. }}$ $1721 \mathrm{~s}, 1663 \mathrm{~s}, 1621 \mathrm{~m}$, and $1590 \mathrm{~m} \mathrm{~cm}^{-1}$. When this reaction was carried out in refluxing acetonitrile (30 min) a precipitate (18%) was produced which contained products (4) and (6) in the ratio $3: 22$ (by ${ }^{1} \mathrm{H}$ n.m.r.).
(b) With N, N'-diphenylthiourea. DMHD (4.00 g) was added to a stirred solution of N, N^{\prime}-diphenylthiourea (5.43 g) in warm, dry methanol and the mixture stirred for 9 h . Filtration gave bis[1Z,3E)-1,4-dimethoxycarbonylbuta-1,3-dien-1-yl]sulphide (10) ($0.89 \mathrm{~g}, 20.2 \%$), as pale salmon microneedles (from chloroform-methanol), m.p. $167-168.5^{\circ} \mathrm{C}$ (Found: C, 52.0; H, 4.6\%. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{8} \mathrm{~S}$ requires $\mathrm{C}, 51.9$; $\mathrm{H}, 4.9 \%$); $v_{\text {max. }} 1700 \mathrm{~s}, 1621 \mathrm{w}$, and $1568 \mathrm{w} \mathrm{cm}{ }^{-1} ; m / e$ (CI; $\left.\mathrm{CH}_{4}\right) 399\left(M+29^{+}, 66\right), 371\left(M+1^{+}, 80\right), 340\left(M-30^{+}\right.$, $95), 339\left(M-31^{+}, 100\right)$, and $307(100 \%)$. On standing at room temperature for 7 d , the filtrate deposited methyl (2E,4Z)-4-(3-phenyl-2-phenylimino-4-oxo-1,3-thiazolidin-5-ylidene)but-2-en-1-oate (5) ($1.68 \mathrm{~g}, 19.4 \%$), as yellow needles (from chloroform-methanol), m.p. $157-160^{\circ} \mathrm{C}$ (Found: C, $65.7 ; \mathrm{H}, 4.3 ; \mathrm{N}, 7.6 . \quad \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 65.9 ; \mathrm{H}$, 4.4; $\mathrm{N}, 7.7 \%$; $\nu_{\text {max }} 1704 \mathrm{~s}, 1700 \mathrm{~s}, 1660 \mathrm{infl} ., 1637 \mathrm{~s}$, 1612 s , and $1588 \mathrm{~s} \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{M}) 233.5 \mathrm{infl}$. $(\varepsilon 10400)$ and $342.5 \mathrm{~nm}(11400)$; $m / e 364\left(M^{+}, 55\right), 305(16), 195(25)$, $194\left(M-170^{+}, 100\right), 169$ (77), 111 (57), 97 (25), 95 (28), 85
(21), 83 (26), 77 (25), 69 (31), and 67 (21%); $m^{*} 255.5$ $(364 \longrightarrow 305)$. The filtrate was evaporated and the residue triturated with methanol to give N, N^{\prime}-diphenylthiourea $(1.19 \mathrm{~g})$. The remaining reaction residue was chromatographed and a yellow band eluted with toluene. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum indicated a mixture of compound (10) and its $\left(1 E, 3 E^{\prime}\right)$-isomer, the presence of the latter being inferred from a double doublet at $\delta 1.34(J 11.9$ and 15.7 Hz).
(c) With perhydropyrimidine-2-thione (11). DMHD (6.00 g) was added to a solution of the thiourea (11) (4.14 g) in methanol (100 ml) and the mixture stirred at room temperature for 16 h . The solvent was removed and the residue chromatographed. A pale yellow band, eluted with chloroform, yielded methyl ($2 \mathrm{E}, 4 \mathrm{Z}$)-4-(2,3,6,7-tetrahydro-3-oxo-5H-thiazolo[3,2-a]pyrimidin-2-ylidene)but-2-en-1-oate (14) (2.18 $\mathrm{g}, \mathbf{2 4 . 4} \%$), as pale orange plates (from methanol), m.p. 132$134{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 52.4 ; \mathrm{H}, 4.8$; N, 11.1. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 52.3 ; \mathrm{H}, 4.8 ; \mathrm{N}, 11.1 \%$) ; $\nu_{\text {max. }} 1694 \mathrm{~s}, 1630 \mathrm{~s}$, 1615 s , and $1593 \mathrm{~s} \mathrm{~cm}^{-1}$; $m / e 252\left(M^{+}, 2 y\right), 193\left(M-59^{+}\right.$, 100), 165 (36), 114 (15), 111 (25), 99 (11), 83 (17), and 82 $(11 \%) ; m^{*} 184.2(237 \longrightarrow 209), \quad 168.5 \quad(221 \longrightarrow 193)$, $148.1(252 \longrightarrow 193)$, $141.1(193 \longrightarrow 165)$, $86.0(114 \longrightarrow$ 99), and $62.0(111 \longrightarrow 83)$.
(d) With perhydro-1H-1,3-diazepine-2-thione (12). DMHD $(6.50 \mathrm{~g})$ was added to solution of the thiourea (12) (5.00 g) in warm methanol (100 ml) and stirred at room temperature for 24 h . The solvent was removed and the residue chromatographed. A yellow band, eluted with chloroform, gave methyl (2E,4Z)-4-(2,3,5,6,7,8-hexahydro-3-oxothiazolo[3,2-a]$[1,3]$ diazepin-2-ylidene)but-2-en-1-oate (15) ($2.69 \mathrm{~g}, 28.9 \%$), as cream needles (from methanol), m.p. $118-120^{\circ} \mathrm{C}$ (Found : C, $54.2 ; \mathrm{H}, 5.4 ; \mathrm{N}, 10.4 . \quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 54.1$; $\mathrm{H}, 5.3$; $\mathrm{N}, 10.5 \%$); $\nu_{\text {max }} 1720 \mathrm{~s}, 1661 \mathrm{~s}, 1620 \mathrm{~s}$, and 1594 s cm^{-1}; $\lambda_{\max }(\mathrm{M}) 233.5(\varepsilon 10600), 260.5(6600)$, and 351 nm (21900); $\lambda_{\max }$ (A) 243.5 ($\varepsilon 7400$), 259.5 (7500), 332 (24900), and $34 \mathrm{linfl} . \mathrm{nm}(23600) ; m / e 266\left(M^{+}, 58\right)$, 208 (13), 207 ($M-59^{+}, 100$), 179 (32), 114 (13), 111 (45), 99 (11), 98 (17), $83(14)$, and $68 .(22 \%) ; m^{*} 161.1(266 \longrightarrow 207)$.
(e) With methylthiourea. Methylthiourea (2.76 g) and DMHD (5.04 g) were stirred together in methanol (80 ml) for 8 h . A cream precipitate was formed which contained a mixture of compounds (22) and (23). Recrystallisation from methanol yielded methyl (2E,4Z)-4-(2-imino-3-methyl-4-oxo-1,3-thiazolidin-5-ylidene)but-2-en-1-oate (22) (2.83 g, 40.8%), as white microneedles (from methanol), m.p. 179$180^{\circ} \mathrm{C}$ (Found: C, 47.6; H, 4.4; N, $12.2 \% . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 47.8 ; \mathrm{H}, 4.5 ; \mathrm{N}, 12.4 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3325 \mathrm{w}$, $1710 \mathrm{~s}, 1632 \mathrm{infl} ., 1620 \mathrm{~s}$, and $1597 \mathrm{~m} \mathrm{~cm}^{-1}$; $m / e 226\left(M^{+}\right.$, 29), $167\left(M-59^{+}, 100\right)$, 114 (42), 111 (70). 99 (27). 83 (17). and 39 (47%).
(f) With imidazoline-2-thione (13). (i) In methanol. DMHD (6.50 g) was added to a solution of the thiourea (13) $(3.48 \mathrm{~g})$ in warm methanol (100 ml) and the mixture stirred at room temperature for 6 h . A white precipitate was filtered off and shown by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy to be a mixture of at least three compounds. This mixture was chromatographed using chloroform as eluant and the first band (which showed blue fluorescence on irradiation at 350 nm) gave methyl ($2 \mathrm{E}, 4 \mathrm{Z}$)-4-(2,3,5,6-tetrahydro-3-oxo-imidazo[2,1-b]thiazol-2-ylidene)but-2-en-1-oate (19) (1.05 g 12.6%) as yellow feathers (from chloroform-methanol), m.p. $179-184.5^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.5 ; \mathrm{H}, 4.3 ; \mathrm{N}, 11.8 . \mathrm{C}_{10} \mathrm{H}_{10^{-}}$ $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 50.4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 11.8 \%\right)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right.$ $1710 \mathrm{~s}, 1630 \mathrm{~s}$, and $1590 \mathrm{w} \mathrm{cm}{ }^{-1} ; m / e 238\left(M^{+}, 26\right), 179$ ($M-59^{+}, 100$), 114 (23), 111 (73), 99 (13), 85 (19), 83 (29),
$74(21), 71(18)$, and $69(13 \%) ; m^{*} 134.8(238 \longrightarrow 179)$, $86.0(114 \longrightarrow 99)$, and $62.0(111 \longrightarrow 83)$. Later bands eluted with chloroform gave mixtures of compounds (17) and (18) (${ }^{1} \mathrm{H}$ n.m.r. spectrum).
(ii) In acetonitrile. DMHD (2.16 g) was added to a suspension of compound (13) (1.16 g) in warm acetonitrile and stirred overnight. The fawn-coloured precipitate formed was chromatographed and a brown band eluted with chloroform to give methyl (2E,4E)-4-(2,3,5,6-tetrahydro-3oxoimidazo [2,1-b]thiazol-2-ylidene)but-2-en-1-oate (18) (0.38 g , 14.0%) as cream needles (from chloroform), m.p. 204-206 ${ }^{\circ} \mathrm{C}$ (Found: C, 50.7; H, 4.4; N, 11.9. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 50.4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 11.8 \%) ; \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1720 \mathrm{infl} .$, 1705 s , and $1623 \mathrm{~s} \mathrm{~cm}^{-1}$; $m / e 238$ ($M^{+}, 22$), 180 (12), 179 $\left(M-59^{+}, 100\right), 111$ (12), 83 (17), 68 (17), and 39 (25%).
(g) With benzimidazole- $2(3 \mathrm{H})$-thione. The thione (1.00 g) and DMHD (1.12 g) were refluxed in methanol (25 ml) for 20 min to give a yellow feathery precipitate of methyl (E)-3-(4-oxo-4H-[1,3]thiazino[3,2-b]benzimidazol-2-yl)prop-2-en-1-oate (26) ($0.69 \mathrm{~g}, 36.2 \%$) as yellow microneedles (from DMF), m.p. $255-257^{\circ} \mathrm{C}$ (Found: C, 58.7 ; H, 3.6; N, 9.6. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 3.9 ; \mathrm{N}, 9.8 \%$); $\nu_{\text {max. }}$ $1710 \mathrm{~s}, 1692 \mathrm{~s}, 1653 \mathrm{w}, 1630 \mathrm{~m}, 1603 \mathrm{w}$, and $1564 \mathrm{w} \mathrm{cm}^{-1}$; $m / e 286\left(M^{+}, 100\right)$ and $227(58 \%) ; m^{*} 180.4(286 \longrightarrow 227)$. After 2 h at room temperature, more crystals had been deposited from the filtrate. These were filtered off to give dimethyl (2Z,4E)-2-(1H-benzimidazol-2-ylthio)hexa-2,4-diene-1,6-dioate (28) ($0.44 \mathrm{~g}, 20.8 \%$) as yellow microplates (from methanol), m.p. $175-177^{\circ} \mathrm{C}$ (Found: C, $56.5 ; \mathrm{H}, 4.3$; N, 8.9. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.\mathrm{C}, 56.6 ; \mathrm{H}, 4.4 ; \mathrm{N}, 8.8 \%\right) ; \nu_{\max }$. $1718 \mathrm{~s}, 1708 \mathrm{~s}, 1625 \mathrm{w}$, and $1572 \mathrm{w} \mathrm{cm}{ }^{-1}$; $m / e\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ $319\left(M+1^{+}, 39\right), 318\left(M^{+}, 18\right), 289(49), 288(38), 287(71)$, 286 (56), 259 (30), 256 (21), 245 (27), 228 (60), 227 ($M-91^{+}$, 100), 169 (28), 150 (25), 111 (30), 91 (39), and 78 (23%).
(h) With ethanethioamide. Ethanethioamide (2.00 g) and DMHD (4.50 g) were refluxed together in methanol (65 ml) for 20 h . The volume of solvent was reduced to 10 ml and diethyl ether (30 ml) added to give a precipitate of methyl (2E,4Z)-4-(2-methoxy-2-methyl-4-oxo-1,3-thiazolidin-5-ylidene)but-2-en-1-oate (31) (0.98 g, 15.1%) as creamcoloured plates (from methanol), m.p. 141-152 ${ }^{\circ} \mathrm{C}$ (Found: C, $49.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 5.5 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 49.4 ; \mathrm{H}$, $5.4 ; \mathrm{N}, 5.8 \%)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3400 \mathrm{w}, 1701 \mathrm{~s}, 1622 \mathrm{w}$, $1590 \mathrm{w}, 1460 \mathrm{~s}$, and $1436 \mathrm{~m} \mathrm{~cm}^{-1}$.
(i) With 2-aminobenzenethioamide. DMHD (4.00 g) was added to a solution of the thioamide (3.62 g) in methanol $(80 \mathrm{ml})$ and the mixture stirred at room temperature for 8 h . It was then filtered to give methyl (2E,4Z)-4-(2-amino-phenyl)-4,5-dihydro-4-oxothiazol-5-ylidene]but-2-en-1-oate
(33) ($1.82 \mathrm{~g}, 24.0 \%$) as deep-red crystals (from chloroform), m.p. $198-200{ }^{\circ} \mathrm{C}$ (Found: C, 58.5; H, 4.2; N, 9.5. $\mathrm{C}_{14^{-}}$ $\mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 58.3$; H, 4.2 ; N, 9.7%); $\nu_{\text {max. }} 3384 \mathrm{~m}$, $3260 \mathrm{~m}, 1721 \mathrm{~s}, 1687 \mathrm{~s}, 1622 \mathrm{~s}, 1584 \mathrm{w}, 1549 \mathrm{~m}, 1538 \mathrm{w}$, and $1511 \mathrm{~s} \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}$ (M) (220 ($\varepsilon 21700$), 251infl. (7600), 318 (12100), 372 (5500), and $478 \mathrm{~nm}(8700)$; $\lambda_{\text {max. }}$ (A) 232 infl . ($\varepsilon 6900$). 26 linfl. (2900), 310 (8 200), 387infl. (900), and 483 $\mathrm{nm}(1400) ; m / e 288\left(M^{+}, 66\right), 229\left(M-59^{+}, 54\right), 170(15)$, 142 (22), 118 (71), 114 (81), $111\left(\mathrm{M}-177^{+}, 100\right), 99$ (31), $91(13)$, and $83(19 \%) ; m^{*} 182.0(288 \longrightarrow 229), 86.0$ $(114 \longrightarrow 99), 70.0(118 \longrightarrow 91)$, and $62.0(111 \longrightarrow 83)$. A further crop of the product (33) was obtained after 7 d at room temperature (overall yield 38.7%).
(j) With pyridine- $2(3 \mathrm{H})$-thione. The thione (3.57 g) and DMHD (4.50 g) were stirred together in methanol (80 ml)
for 17 h . The solvent was evaporated under reduced pressure to 30 ml and then cooled to $-14{ }^{\circ} \mathrm{C}$ to give dimethyl-(2Z,4E)-2-(pyridin-2-ylthio)hexa-2,4-diene-1,6-dioate (35) $(4.08 \mathrm{~g}, 46.4 \%)$ as pale yellow crystals (from methanol), m.p. $112-114{ }^{\circ} \mathrm{C}$ (Found: C, 56.0; H, 4.8; N, 5.0. $\mathrm{C}_{13}{ }^{-}$ $\mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $\left.55.9 ; \mathrm{H}, 4.7 ; \mathrm{N}, 5.0 \%\right)$; $\nu_{\text {max. }} 3075 \mathrm{~m}$, $3050 \mathrm{~m}, 1717 \mathrm{~s}, 1676 \mathrm{w}$, and $1630 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.
(k) With indoline-2-thione. The thione (1.10 g) and DMHD (1.24 g) were refluxed together in methanol (25 ml) for 8 h and then cooled overnight give to a precipitate of dimethyl (2Z,4E)-2-(indol-2-ylthio)hexa-2,4-diene-1,6-dioate (36) ($1.22 \mathrm{~g}, 51.1 \%$) as yellow feathers (from methanol), m.p. $163-165{ }^{\circ} \mathrm{C}$ (Found: C, 60.6; H, 4.9; N, 4.6. $\mathrm{C}_{10^{-}}$ $\mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires C, $60.5 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.4 \%$) ; $v_{\text {max. }} 3342 \mathrm{~m}$, $1730 \mathrm{~s}, 1710 \mathrm{~s}$, and $1620 \mathrm{~m} \mathrm{~cm}^{-1}$.
(l) With 2-aminobenzothiazole. 2-Aminobenzothiazole $(3.84 \mathrm{~g})$ and DMHD $(4.30 \mathrm{~g})$ were refluxed together in methanol (70 ml) for 44 h , and then left at $-14^{\circ} \mathrm{C}$ overnight to give pale brown precipitate of methyl (2E)-3-(2-oxo-2Hpyramido $[2,1-\mathrm{b}]$ benzothiazol-4-yl)prop-2-enoate (39) (4.27 g, 59.7%) as white microneedles (from chloroform-ether), m.p. $224-226{ }^{\circ} \mathrm{C}$ (Found: C, 58.9; H, 3.6; N, 9.4. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2}-$ $\mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 58.7 ; \mathrm{H}, 3.5 ; \mathrm{N}, 9.8 \%$) ; $\lambda_{\text {max. }} 1714 \mathrm{~s}$, $1650 \mathrm{~s}, 1618 \mathrm{~m}, 1582 \mathrm{~m}$, and $1513 \mathrm{~s} \mathrm{~cm}{ }^{-1}$; $\lambda_{\max }(\mathrm{M}) 228(\varepsilon$ 40900), 262 (19200), and 302 (11500); $\lambda_{\max }$. (A) 261 (ε 20100) and $307 \mathrm{~nm}(19600)$; $m / e 286$ ($M^{+}, 100$), 259 (11), 258 (61), 228 (11), 227 (60), 200 (17), 199 (27), 198 (18), 176 (53), 148 (15), and 146 (12\%); $m^{*} 232.8(286 \longrightarrow 258)$, $180.2(286 \longrightarrow 227), 154.0(258 \longrightarrow 199), 149.0(199 \longrightarrow$ $172)$, and $124.5(176 \longrightarrow 148)$. Chromatography of the reaction residue yielded no further compounds.
(m) With 2-aminothiazole. The procedure in (l) using 2-aminothiazole gave methyl (E)-3-(7-oxo-7H-thiazolo[3,2-a]pyrimidin-5-yl)prop-2-enoate (44) ($1.30 \mathrm{~g}, 16.2 \%$) as yellow lumps from (chloroform-diethyl ether), m.p. 207$213{ }^{\circ} \mathrm{C}$ (Found: C, 50.4; H, 3.6; N, 11.6. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 50.8 ; \mathrm{H}, 3.4 ; \mathrm{N}, 11.9 \%$); $\nu_{\text {max. }} 3250 \mathrm{w}, 1715 \mathrm{~s}$, $1639 \mathrm{~s}, 1628 \mathrm{~s}, 1592 \mathrm{~m}$, and $1560 \mathrm{~s} \mathrm{~cm}^{-1} ; m / e 236\left(M^{+}\right.$, 14), 208 (24), 177 (24), 150 (7), 126 (36), 85 (9), and 83 (15%) ; $m^{*} 183.0(236 \longrightarrow 208), 133.0(236 \longrightarrow 177)$, and $108.0(208 \longrightarrow 150)$.
(n) With 2-aminopyridine. The procedure in (l) was repeated with 2 -aminopyridine. Most of the solvent was evaporated off, and diethyl ether added to give crude methyl (2E)-3-(2-oxo- $2 H$-pyrido[1,2-a]pyrimidin-4-yl)prop-2-
enoate (45) ($1.20 \mathrm{~g}, 90.1 \%$). This contained a polymeric impurity, as shown by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy which was not removable, either by chromatography nor by recrystallisation from methanol-diethyl ether); $\nu_{\max } 3095 \mathrm{w}$, $3062 \mathrm{w}, 1720 \mathrm{~s}, 1633 \mathrm{~s}, 1590 \mathrm{~s}$, and $1550 \mathrm{~s} \mathrm{~cm}^{-1}$; m/e $230\left(M^{+}\right.$, 61), $202\left(M-28^{+}, 100\right), 171\left(M-59^{+}, 53\right), 144$ (23), 143 (19), and 120 (51%).
(o) With 1,2-diaminobenzene. 1,2-Diaminobenzene (3.21 g) and DMHD (5.00 g) were refluxed together in methanol $(80 \mathrm{ml})$ for 30 min and then left at $-14{ }^{\circ} \mathrm{C}$ overnight. The mixture was filtered to give methyl (2E,4E)-4-(1,2,3,4-tetrahydro-3-oxo-quinoxalin-2-ylidene)but-2-en-1-oate (46) ($3.29 \mathrm{~g}, 45.4 \%$) as bronze crystals (from DMF), m.p. 226$228.5{ }^{\circ} \mathrm{C}$ (Found: C, 63.7; H, 5.1; N, 11.6. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 5.0 ; \mathrm{N}, 11.5 \%$); $\nu_{\text {max. }} 3308 \mathrm{~m}, 3200 \mathrm{~m}$, $3103 \mathrm{w}, 3068 \mathrm{w}, 1688 \mathrm{~s}, 1677 \mathrm{~s}, 1639 \mathrm{w}, 1603 \mathrm{~s}$, and 1510 w , $\mathrm{cm}^{-1} ; m / e 244\left(M^{+}, 53\right), 185\left(M-59^{+}, 100\right), 184(54), 167$ (12), and $156(27 \%) ; m^{*} 151.0(185 \longrightarrow 167)$ and 140.2 $(244 \longrightarrow 185)$. The filtrate was refluxed for 30 min and cooled to give a further 0.82 g of the product (46) (overall
yield 56.7%). This new filtrate was refluxed for 3 h and cooled to give methyl 1,2,3,4-tetrahydro-3-methoxycarbonyl-methylenequinoxalin-2-ylacetate (47) ($1.95 \mathrm{~g}, 23.8 \%$) as large. pale-orange prisms (from DMF-several drops of water). m.p. $103.5-104.5{ }^{\circ} \mathrm{C}$ (Found: C, 60.9; H. 5.9; N, 10.0 . $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 60.8; H. 5.8: N. 10.1\%); $\nu_{\text {max. }}$ $3360 \mathrm{~s}, 3283 \mathrm{~m}, 1712 \mathrm{~s}$. $1654 \mathrm{~s}, 1612 \mathrm{~s}$. 1596 s , and 1500 m cm^{-1}; $\lambda_{\text {max. }}$ (M) $254(\varepsilon 10300)$, 307 infl . (8000), and 333 nm (13200); $\lambda_{\text {max. }}$ (A) 230infl. ($\varepsilon 6600$). 269 (9300). and 318 nm (12 800); m/e 276 ($M^{+}, 34$), 244 (9), 203 (11), 171 ($M-$ $\left.105^{+}, 100\right)$, and $143(8 \%) ; m^{*} 191.5(244 \longrightarrow 216), 149.0$ $(276 \longrightarrow 203)$, $144.0(217 \longrightarrow 177)$, and $120.0(171 \longrightarrow$ 143).
(p) With 2-aminobenzenethiol. (i) In refluxing methanol. DMHD (6.72 g) and freshly distilled 2 -aminobenzenethiol $(5.00 \mathrm{~g}, 3.05 \mathrm{ml})$ were refluxed together in methanol (110 ml) for 32 h . Filtration gave methyl ($2 \mathrm{E}, 4 \mathrm{Z}$)-(3,4-dihydro-3-oxo-2H-1,4-benzothiazin-2-ylidene)but-2-en-1-oate (49) (2.85 g. 27.3%) as yellow-orange microneedles (from chloroform). m.p. $240-242{ }^{\circ} \mathrm{C}$ (Found: C, 59.4 ; H, 4.3; N. 5.3%. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 59.8 ; \mathrm{H}, 4.2 ; \mathrm{N} .5 .4 \%\right): \nu_{\max }$. $3162 \mathrm{~m}, 3100 \mathrm{w}, 1722 \mathrm{~s}, 1706 \mathrm{~m}, 1662 \mathrm{~s}, 1612 \mathrm{~m}, 1593 \mathrm{~s}$. 1550 w , and $1500 \mathrm{w} \mathrm{cm}^{-1}$; $m / e 261\left(M^{4} .40\right), 202(M-$ $59^{+}, 100$), $174(7)$, and $173(11 \%) ; m^{*} 156.4$ (261 $\longrightarrow 202)$ and $149.5(202 \longrightarrow 174)$. The filtrate was chromatographed and a red band eluted with chloroform to give methyl 2,3-dihydro-1-oxo-1H-pyrrolo-[2,1-c] $[1,4]$ benzothiazine-4-carboxylate (53) ($0.03 \mathrm{~g}, 0.3 \%$) as pale, orange needles (from methanol), m.p. $156.5-158.5{ }^{\circ} \mathrm{C}$ (Found: C, 59.6; H, 4.2; N, 5.2. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $59.8 ; \mathrm{H}, 4.3 ; \mathrm{N}, 5.4 \%)$; $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 1743 \mathrm{~s}, 1719 \mathrm{~s}$, $1633 \mathrm{~s}, 1480 \mathrm{~s}, 1448 \mathrm{~m}, 1435 \mathrm{~m}$, and $1351 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; $\lambda_{\text {max }}$ (M) 237.5 infl. ($\varepsilon 9700$), 247 infl. (17000), 286 (8900), 252 (19000), and $336 \mathrm{~nm}(4000)$; $m / e 261$ ($M^{+}, 100$), 218 (14), $202(23), 173(20)$, and $147(66 \%) ; m^{*} 207.6(261 \longrightarrow 233)$, $156.6(261 \longrightarrow 202)$, and $150.0(202 \longrightarrow 174)$. A yellow band, eluted later with chloroform, gave methyl (Z)-3,4-di-hydro-3-methoxycarbonylmethyl- $2 H$-1,4-benzothiazin-2-
ylideneacetate (52) ($1.03 \mathrm{~g}, 8.8 \%$) as a yellow liquid which polymerised on distillation under reduced pressure.
(ii) In methanol at room temperature. DMHD (2.00 g) and the freshly distilled thiol (1.49 g) were stirred together at room temperature for 5 h . The solvent was evaporated under reduced pressure and the residue triturated with a few drops of methanol to give dimethyl (4E,2Z)-2-(2-aminophenyl-thio)hexa-2,4-diene-1,6-dioate (51) ($0.11 \mathrm{~g}, 2.63 \%$) as orange cubes (from diethyl ether), m.p. $96{ }^{\circ} \mathrm{C}$ (Found: C, 57.3; H, 5.2 ; $\mathrm{N}, 4.7 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 57.3 ; \mathrm{H}, 5.3 ; \mathrm{N}$, 4.8%) ; $v_{\text {max }} 3461 \mathrm{~m}, 3360 \mathrm{~m}, 1706 \mathrm{~s}, 1624 \mathrm{~m}, 1610 \mathrm{~m}$, and $1561 \mathrm{w} \mathrm{cm}^{-1}$; $m / e 293$ ($M^{+}, 44$), 234 (42), 202 (57), 194 (40), 174 (52), 173 (23), 169 ($M-124^{+}, 100$), $162(22), 124$ (21), $80(37)$, and $65(27 \%) ; m^{*} 150.0(202 \longrightarrow 174), 128.3$ $(233 \longrightarrow 173)$, and $117.5(169 \longrightarrow 141)$.

Reactions of Dimethyl Penta-2,3-diene-1,5-dioate (54).Unless stated otherwise, equimolar quantities of the nucleophilic compound and the diester (54) were refluxed together in methanol (10 -fold amount by mass) for 3 h . The products were isolated by filtration of the cold $\left(-14{ }^{\circ} \mathrm{C}\right)$ solution or by precipitation with diethyl ether from the concentrated reaction mixture, followed by cooling.
(a) With 1,2-diaminobenzene. The diamine (0.69 g) gave methyl (Z)-2,3,4,5-tetrahydro-4-oxo-1H-1,5-benzodiazepin-2ylideneacetate (60) ($0.31 \mathrm{~g}, 20.9 \%$) as white feathers (from methanol), m.p. 251-254 ${ }^{\circ} \mathrm{C}$ (Found: C, 61.8; H, 5.1; N, 11.9. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}, 5.1 ; \mathrm{N}, 12.1 \%$);
$\nu_{\text {max. }} 3210 \mathrm{~m}, 3080 \mathrm{w}, 1695 \mathrm{~s}, 1672 \mathrm{w}, 1663 \mathrm{w}, 1638 \mathrm{~s}, 1600 \mathrm{~m}$, and $1509 \mathrm{~cm}^{-1}$.
(b) With 2-aminobenzothiazole. This amine (1.00 g) gave methyl 2-oxo-2H-pyrimido[2,1-b]benzothiazol-4-ylacetate (61) ($0.95 \mathrm{~g}, 52.0 \%$) as yellow cubes (from methanol), m.p. 233$236{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 56.9; H, 3.8; N, 10.0 . $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, 56.9 ; H. 3.7 ; N. 10.2%); $\nu_{\text {max. }}$ $1730 \mathrm{~s}, 1642 \mathrm{~s}$, and $1582 \mathrm{~s} \mathrm{~cm}{ }^{-1}$; $m / e 274\left(M^{+}, 90\right)$, 187 ($M-87^{\dagger}, 100$). and 176 (57\%).
(c) With benzimidazole-2-thione. The thione (1.44 g) gave methyl 4-oxo-4H-[1,3]thiazino $[3,2-\mathrm{a}]$ benzimidazol-2-ylacetate (63) ($1.12 \mathrm{~g}, 42.6 \%$) as white microneedles (from methanol), m.p. 133-135 ${ }^{\circ} \mathrm{C}$ (Found: C, 56.7; H, 3.6; N, 10.2 . $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C. $56.9 ; \mathrm{H}, 3.7 ; \mathrm{N}, 10.2 \%$); $\nu_{\text {max. }}$ 1740 s .1699 s . and $1610 \mathrm{~s} \mathrm{~cm}^{-1} ; m / e 274\left(M^{+}, 100\right) .215(14)$, 188 (19). 187 (16), 150 (42), and 85 (17%).
(d) With N.N'-dimethylthiourea. The thiourea (0.87 g) gave methyl 3,4-dihydro-3-methyl-2-methylimino-4-oxo-2H-1,3-thiazin-6-ylacetate (65) ($1.23 \mathrm{~g}, 64.5 \%$), as colourless needles (from methanol). in.p. $79-79.5{ }^{\circ} \mathrm{C}$ (Found: C , 47.4; $\mathrm{H}, 5.4 ; \mathrm{N}, 12.1 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 47.4 ; \mathrm{H}$, $5.3 ; \mathrm{N}, 12.3 \%) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1742 \mathrm{~s}, 1636 \mathrm{~s}$, and 1600 s $\mathrm{cm}^{-1} ; m / e 228\left(M^{+}, 100\right), 158(24), 155\left(M-73^{+}, 61\right), 130$ $\left(M-98^{+}, 100\right), 126(28), 85(26) .71$ (63), and $69(40 \%)$; $n^{*} 173.6(228 \longrightarrow 199)$, $105.6(228 \longrightarrow 155), 99.5(170 \longrightarrow$ $130)$, and $80.0(130 \longrightarrow 102)$.
(e) With $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylthiourea. The thiourea (1.46 g) gave methyl 3,4-dihydro-4-oxo-3-phenyl-2-phenylimino-2H-1,3-thiazin-6-ylacetate (66) ($0.76 \mathrm{~g}, 33.4 \%$) as white microneedles (from methanol), m.p. $156-157{ }^{\circ} \mathrm{C}$ (Found: C , $64.5 ; \mathrm{H}, 4.7 ; \mathrm{N}, 7.9 . \quad \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}$, $4.6 ; \mathrm{N} .8 .0 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1742 \mathrm{~m}, 1697 \mathrm{~s}, 1638 \mathrm{w}$,

Table 1
${ }^{13} \mathrm{C}$ N.m.r. data ${ }^{a}$ for the compounds shown

Compd.	$\delta{ }^{\delta}$	$\delta\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$	
(15)	147.4 (s, C-2), 165.8 (s, C-4),	51.7	166.1
	134.2 ($\mathrm{s}, \mathrm{C}-5$), 124.0 ($\mathrm{d}, \mathrm{C}-6)^{\text {b }}$,		
	137.8 (d, C-7), 127.0 (d, C-8) ${ }^{\text {b }}$,		
	$48.8\left(\mathrm{t},=\mathrm{NCH}_{2}\right), 43.9\left(\mathrm{t},-\mathrm{NCH}_{2}\right)$, and 24.9 and $27.6\left(2 \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.		
(22) ${ }^{\circ}$	$151.4(\mathrm{C}-2), 28.3\left(3-\mathrm{CH}_{3}\right), 164.8$ $(\mathrm{C}-4), 133.2(\mathrm{C}-5), 123.8^{6}(\mathrm{C}-6)$	51.8	165.8
	137.5 (C-7), and $127.8{ }^{\circ}$ (8-C).		
(31)	97.0 ($\mathrm{s}, \mathrm{C}-2), 30.6\left(\mathrm{q}, 2-\mathrm{CH}_{3}\right)$,	51.7	167.0
	50.6 (q, 2-OCH ${ }_{3}$), 166.6 (s, C-4),		
	137.1 (s, C-5), 122.3 (d, C-6) ${ }^{\text {b }}$,		
	138.9 (d, C-7), and 125.5 (d, C-8) ${ }^{\text {b }}$.		
(63)	145.7 (s, C-2) ${ }^{\text {b }}$, 42.7 (t, 2- CH_{2}),	53.3	169.0
	120.0 (d, C-3), 160.5 (s, C-4),		
	147.6 (s, C-5a), ${ }^{\text {b }} 117.4,119.1$,		
	125.1, 127.3 (4 d, C-6, -7, -8, -9),		
	132.3 (s, C-9a), and 143.8 (s,		
	$\mathrm{C}-10 \mathrm{a}$).		
(65)	147.9 (s, C-2), 38.5 (q, 2- NCH_{3}),	54.2	169.4
	31.5 (q, 3-Me), 163.8 (s, C-4),		
	119.9 (d, C-5), 141.8 (s, C-6), and		
	42.7 (t, $6-\mathrm{CH}_{2}$).		
$(67)^{d}$	163.1 ($\mathrm{s}, \mathrm{C}-2),{ }^{\text {b }} 28.4$ (q, NMe),	52.0	169.6
	168.2 (s, C-4), ${ }^{\text {b }} 118.4$ (d, C-5),		
	141.3 (s, C-6), and 40.2 (t,		
	$6-\mathrm{CH}_{2}$).		
$(68){ }^{\text {d }}$	164.9 (s, C-2), ${ }^{\text {b }} 168.9$ (s. C-4), ${ }^{\text {b }}$	52.3	170.1
	118.7 (d. C-5), 141.9 (s, C-6), and		
	40.0 ($\left.\mathrm{t}, 6-\mathrm{CH}_{2}\right)$.		
a For spectra recorded in CDCl_{3} at 22.63 MHz ; shifts are i			
confirmed by off-resonance decoupling tech			
		etely	coup
spectrum only. ${ }^{\text {d }}$ Spectrum recorded in (CD		$)_{2} \mathrm{SO}$.	

Table 2
${ }^{1}$ H N.m.r. data for the compounds shown ${ }^{a}$

$\underset{\text { (1) }}{\text { Compound }}$	τ^{τ}	$\tau\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$
	3.58 (d, 2-H), 3.17 (d, 3-H)	6.20
	($J_{2.3} 16.3$).	6.22
$(4){ }^{\text {b }}$	6.72 (s, $=\mathrm{NMe}$), $\mathrm{c}^{6} 6.78$ (s,	6.19
	$\left.3-\mathrm{CH}_{3}\right),{ }^{\text {c }} 2.65-2.76$ (m, 6-,	
	7-H), 3.77 (dd, 8-H)	
	$\left(J_{6.8} 2.5, J_{7.8} 11.7\right){ }^{\text {d }}$	
(5)	$2.58-3.21$ (m, $10 \mathrm{ArH}, 6-$,	6.31
	$8-\mathrm{H}), 3.67-4.09$ (m, 7-H).	
(6)	$6.80(\mathrm{~s},=\mathrm{NMe}),{ }^{\text {c }} 6.85(\mathrm{~s}$,	6.27
	$3-\mathrm{Me}), c 3.42(\mathrm{~d}, 6-\mathrm{H}), 1.31$ (dd, 7-H) 4.04 (d, 8-H)	
	($J_{8,5} 12.0, J_{7}$ 16.0).	
(7) ${ }^{4}$	3.85 (1-, 4-H), 2.72 (2, 3-H)	
	($J_{1.2} 15.8, J_{1,3}-0.7, J_{1,4}$	
	$\left.0.8, J_{2.3} 11.4\right)$.	
$(8)^{4}$	$4.05(1-\mathrm{H}), 3.32(2-\mathrm{H}), 1.60$	
	$(3-\mathrm{H}), 3.88(4-\mathrm{H})\left(J_{1.2} 11.6\right.$,	
	$J_{1,3}, 0.9, J_{1.4} 0.7, J_{2.9} 11.6$,	
	$J_{2.4} 0.7, J_{3.4} 16.0$).	
$(10)^{b}$	2.47 (dd, $2-\mathrm{H}$), 2.06 (dd, $3-\mathrm{H}$),	6.22
	3.78 (dd, 4-H): ($J_{2.3} 11.6$,	6.27
	$\left.J_{2.4} 0.8, J_{3.4} 15.4\right)$. ${ }^{\text {a }}$,	
(14)	$2.61-3.06$ (m, 3-, 4-H);	
	$3.52-4.09(\mathrm{~m}, 8-\mathrm{H})$,	6.24
	$6.15-6.48$ (m, $2 \times$ N $-\mathrm{CH}_{2}$),	
	$7.90-8.29$ ($\mathrm{m}, \mathrm{CH}_{2}-$).	
$(15)^{6}$	$2.58-2.76$ (m, 3-, 4-H),	6.13
	3.72 (d, 2-H), 5.95 (t,	
	$\left.=\mathrm{NCH}_{2}\right), 606\left(\mathrm{t}, \mathrm{NCH}_{2}\right)$,	
(17)	2.57 and 2.66 ($2 \mathrm{~d}, \mathrm{CH}=\mathrm{CHE}$,	6.33
	J 15.3,) 3.66 (s, 3-H), 6.04	
	(s, 6-, 7-H).	
$(18)^{6}$	3.40 (dd, 6-H), 1.37 (dd,	6.21
	$7-\mathrm{H}), 3.99$ (dd, $8-\mathrm{H}$) ($\mathrm{E}_{6.7}$	
	11.7, $\left.J_{6.8} 0.8, J_{7.8} 15.6\right)$.	
(19)	$2.72-3.10$ (m, 6-, 7-H),	6.23
	$3.60-4.08$ (m, 8-H),	
	$5.47-6.38$ (m, $\mathrm{N}-\mathrm{CH}_{2}$).	
(22) e.f	6.90 (s, 3-Me), $2.67-3.10$	6.33
	(m, 6-, 7-H), 3.57 (d, 8-H),	
	0.17 (s, NH) ($J_{7.8} 12.5$). ${ }^{\text {d }}$	
(26) e,f	2.24 and 3.32 (d, $\mathrm{CH}=\mathrm{CHE}$	6.21
	$J 16.4), 2.72$ (s, 3-H),	
	$1.54-1.64$ (m, 6-H),	
	$2.15-2.61$ (m, 3 ArH).	
(28) ${ }^{\text {e }}$	2.04 (dd, $2-\mathrm{H}$), 2.31 (dd,	6.28
	$3-\mathrm{H}$, 3.25 (dd, $4-\mathrm{H}$),	6.34
	$2.54-2.57$ (m, 2 ArH),	
	2.84-2.86 (m, 2 ArH) ($\mathrm{J}_{2.3}$	
	$\left.11.2, J_{2.4} 0.8, J_{3.4} 15.3\right){ }^{2.3}$	
(31)	8.04 (s, 2 -Me), 6.78 (s,	6.26
	2 -OMe), 2.21 (b, 3-H), ${ }^{\text {a }}$	
	$2.46-3.06$ (m, 6-, 7-H), 3.93	
	(dd, 8-H) ($\left.J_{2.4} 1.3, J_{3.4} 13.1\right){ }^{\text {d }}$	
(33) ${ }^{\text {c }}$	2.43 (dd, 6-H), 2.71 (dd,	6.25
	7-H), 3.33 (dd, 8-H), 3.08	
	(d. $\left.3^{\prime}-\mathrm{H}\right), 2.60$ (dt, $\mathbf{4}^{\prime}-\mathrm{H}$),	
	3.33 (t, $\left.5^{\prime}-\mathrm{H}\right){ }^{\text {, }} 2.39$ (dd,	
	$\left.6^{\prime}-\mathrm{H}\right), 1.96\left(\mathrm{~b}, \mathrm{NH}_{2}\right)\left(J_{6.7}\right.$	
	11.9 , ${ }_{8,8} 0.8$, $J_{78} 15.2,7$	
	$J_{5,6}^{3,4} 9.2,$	
$(35){ }^{\text {b }}$	2.29 (dd, 2-H), 2.14 (dd,	6.21
	$3-\mathrm{H}), \mathbf{3 . 7 0}$ (dd, 4-H), 2.78	6.27
	($\mathrm{dd}, 3^{\prime}-\mathrm{H}$), 2.45 ($\left.\mathrm{dt}^{\prime} 4^{\prime}-\mathrm{H}\right)$,	
	2.96 (dt, $\left.5^{\prime}-\mathrm{H}\right), 1.63$ (dd, $\left.6^{\prime}-\mathrm{H}\right)$	
	($J_{2.3} 11.3, J_{2.4} 0.5, J_{3.4} 15.2$,	
(36)	${ }_{2} .45-3.10$ ($\left.\mathrm{m}, 4 \mathrm{ArH},{ }^{2}-\mathrm{H}\right)$,	6.30
	2.00 (dd, 3-H), 3.79 (d, 4-H),	6.60
	3.40 (d, $\left.3^{\prime}-\mathrm{H}\right){ }^{(}{ }_{2.3} 10.9, J_{3.4}$	
	14.7).	

Table 2 (continued)

Compound
(49) ${ }^{\text {b.e }}$

τ	$\tau\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$
2.61 and 3.51 ($2 \mathrm{~d}, \mathrm{CH}=\mathrm{CHE}$)	6.18
(J 15.3), 3.73 (s. 2-H),	
$2.31-2.84$ (m, 4 ArH).	
2.71 (d, 2-H), 1.97 (d, 3-H),	6.25
2.29 and 3.20 ($2 \mathrm{~d}, \mathrm{CH}=\mathrm{CHE}$,	
3.40 (s, 3-H), 2.28 and 3.42	6.21
(2 d, CH=CHE, J 15.7),	
$2.12(\mathrm{~d}, 6-\mathrm{H}),{ }^{\wedge} 3.15(\mathrm{t}, 7-\mathrm{H}){ }^{\wedge}$	
($\mathrm{f}_{6.7} \mathbf{6 . 9}$).	
4.14 (d, 2-H), 1.98 (dd, 3-H),	6.35
3.96 (d, 4-H), 1.24 (br,	
$\left.\mathrm{l}^{\prime}-\mathrm{H}\right),-0.36$ (br, $\left.\mathbf{4}^{\prime}-\mathrm{H}\right)$,	
$2.75-3.20$ (m, 4 ArH$)\left(J_{2.3}\right.$	
$\left.15.9, J_{3.4} 14.1\right)$.	
-0.70 (s, 1-H), 5.41 (s,	6.45
$2-=\mathrm{CH}), 5.59-5.96$ (m, 3-H),	6.45
7.50 (d, 3-CH2), 4.02 (d,	
4-H), ${ }^{\text {a }}$ 2.98-3.61 ($\mathrm{m}, 4 \mathrm{ArH}$)	
($\left.J_{3.4} 2.4, J_{3 . \mathrm{CH}_{4}} 6.8\right)$.	
$2.49-2.63$ (m, 2-, 3-H), 3.57	6.21
(d, 4-H), -1.13 (br, NH),	
${ }_{6}^{2.93}$ (dd, $\left.5^{\prime}-\mathrm{H}\right), 2.80$ (dt,	
($\mathrm{dd}, 8^{\prime}-\mathrm{H}$) ($\mathrm{J}_{3.4} 13.9$, ${ }^{\text {d }} J_{5}{ }^{\prime} .8^{\prime}$	
8.3, $J_{5}^{\prime}{ }^{\prime} 1.0, J^{\prime} \mathrm{z}^{\prime} 7.7$,	
$\left.J_{6.8} 1.2, J_{7.8} 7.8\right)$.	
2.41 (dd, 2-H), 1.87 (dd,	6.07
3-H), 3.61 (dd, 4-H), 5.40	6.22
(br, NH_{2}), 3.18 (dd, $3^{\prime}-\mathrm{H}$),	
2.76 (dt, $\left.4^{\prime}-\mathrm{H}\right), 3.22\left(\mathrm{dt}, 5^{\prime}-\mathrm{H}\right)$,	
2.61 (dd, 6'-H) ($J_{2.3} 11.3$,	
$J_{2,4} 0.9, J_{3,4} 15.2, J_{3}{ }^{\prime} 4^{\prime} 8.0$,	
$J_{3,5}^{\prime}{ }^{\prime} 1.2, J_{4}^{\prime} \cdot 5^{\prime} 7.5, J_{4.8}^{\prime}{ }^{\prime}$	
4.20 (s, 2- $=\mathrm{CH}$), 5.57 (q,	6.30
$3-\mathrm{H}), 7.25-7.73\left(\mathrm{~m}, 3-\mathrm{CH}_{2}\right), \quad 6.39$	
$5.12(\mathrm{br}, \mathrm{~N}-\mathrm{H}), 2.86-3.50(\mathrm{~m},$$4 \mathrm{ArH})\left(J_{3 . \alpha-\mathrm{H}} 4.0, J_{3 . \beta-\mathrm{H}}\right.$	
$8.22-8.53\left(\mathrm{~m}, 3-\mathrm{H}_{2}\right)$,	
$2.78-3.15$ (m, 6-, 7-, 8-H),	
1.69-1.90 (m, 9-H).	
4.02 (s, $=\mathrm{CH}$).	6.28
-0.07 (br, l-H), 6.96 (s, 6.41	
-0.50 (br, $5-\mathrm{H}),{ }^{\text {c }} 3.00$ (s,	
4 ArH).	
3.72 (s, 3-H), 5.52 (s, $4-\mathrm{CH}_{2}$),	6.30
$1.94-2.64$ (m, 4 ArH).	
$6.33\left(\mathrm{~s}, 2-\mathrm{CH}_{2}\right) .3 .37(\mathrm{~s}, 3-\mathrm{H}),{ }^{n}$	
$1.40-1.58(\mathrm{~m}, 6-\mathrm{H}), 2.20-2.79$	
(m, 3 ArH).	
6.96 ($\mathrm{s},=\mathrm{NMe}),{ }^{\text {c }} 6.78$ ($\left.\mathrm{s}, 3-\mathrm{Me}\right),{ }^{\text {c }}$	6.36
3.61 (s, 5-H), $6.30\left(\mathrm{~s}, 6-\mathrm{CH}_{2}\right)$.	
$2.56-2.92$ (m, 10 ArH),	6.54
3.63 (s, 5-H), 6.56 (s, 6-CH2).	
7.14 (s, NMe), 1.50 (br,	6.38
$\mathrm{N}-\mathrm{H}), \mathbf{3 . 7 2}$ (s, 5-H), 6.48	
(s, $6-\mathrm{CH}_{2}$).	
1.54 (br, 2-NH2), 3.65 (s,	6.36
$5-\mathrm{H})$, 6.34 (s, $6-\mathrm{CH}_{2}$).	
6.68 (s, 2-CH2). 4.08 (s, 3-H),	6.27
1.78 (br, 5-H), 2.40-3.02	
(m, 4 ArH).	

[^0]1595 w , and $1492 \mathrm{~m} \mathrm{~cm}^{-1}$; $m / e 352\left(M^{+}, 100\right)$, 351 (44), 243 ($M-109^{+}, 75$), 211 (97), 194 (29), and 144 (63\%); m^{*} $290.0 \quad(351 \longrightarrow 319), \quad 183.2(243 \longrightarrow 211)$, and 167.8 (352 $\longrightarrow 243$).
(f) With methylthiourea. The thiourea (0.58 g) gave methyl 2-methylamino-4-oxo-4H-1,5-thiazin-6-ylacetate (67) ($0.78 \mathrm{~g}, 56.6 \%$) as white microplates (from methanol), m.p. $154-155.5^{\circ} \mathrm{C}$ (Found: C, 45.1; H, 4.6; N, 12.8. $\mathrm{C}_{8} \mathrm{H}_{10}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 44.8 ; \mathrm{H}, 4.7 ; \mathrm{N}, 3.1 \%\right) ; \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $3435 \mathrm{w}, 1740 \mathrm{~s}, 1634 \mathrm{~s}, 1570 \mathrm{~s}$, and $1544 \mathrm{~s} \mathrm{~cm}{ }^{-1} ; m / e 214$ $\left(M^{+}, 63\right), 158\left(M-56^{+}, 83\right), 130\left(M-84^{+}, 100\right), 126(38)$, and $85(39 \%) ; m^{*} 107.0(158 \longrightarrow 130)$.
(g) With thiourea. The allene (54) was added to a solution of thiourea (0.48 g) in warm methanol (15 ml). A precipitate was rapidly formed which gave methyl 2 -amino-4-oxo- $4 \mathrm{H}-1,3$-thiazin-6-ylacetate (68) ($0.83 \mathrm{~g}, 65.7 \%$) as white microneedles (from methanol), m.p. $178-179{ }^{\circ} \mathrm{C}$ (Found: $42.2 ; \mathrm{H}, 4.0 ; \mathrm{N}, 13.9 . \quad \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 42.0 ; \mathrm{H}, 4.0$; $\mathrm{N}, 14.0 \%)$; $\nu_{\text {max. }} 3355 \mathrm{~s}, 3300$ infl., $1718 \mathrm{infl}, 1710 \mathrm{~s}$, 1658 infl., 1650 infl., 1636 infl., and $1625 \mathrm{~cm}^{-1} ; m / e 200$ $\left(M^{+}, 29\right), 158\left(M-42^{+}, 100\right), 130(81) .127(21), 126(28)$. and $85(43 \%) ; m^{*} 124.8(200 \longrightarrow 158), 107.0(158 \longrightarrow$ $130)$, $101.8(158 \longrightarrow 127)$, and $95.2(169 \longrightarrow 127)$.
(h) With 2 -aminobenzenethiol. The thiol (0.80 g) gave methyl 2,3,4,5-tetrahydro-4-oxo-1,5-benzothiazepin-2-ylideneacetate (70) ($0.62 \mathrm{~g}, 38.9 \%$) as white microneedles (from methanol-diethyl ether). m.p. 226-228 ${ }^{\circ} \mathrm{C}$ (Found: C.
57.7; $\mathrm{H}, 4.6 ; \mathrm{N}, 5.5 . \quad \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 57.8 ; \mathrm{H}$, $4.5 ; \mathrm{N}, 5.6 \%)$; $\nu_{\text {max. }} 3190 \mathrm{~m}, 3110 \mathrm{~m}, 3060 \mathrm{infl}, 1710 \mathrm{~s}$, 1688 s , and $1588 \mathrm{~s} \mathrm{~cm}^{-1}$.

We thank Lady Richards for the n.m.r. spectra (${ }^{13} \mathrm{C}$ and $300 \mathrm{MHz}{ }^{1} \mathrm{H}$) Pfizer Ltd. for their support, and the M.R.C. for a studentship (to J. D. W.).
[1/1929 Received, 14th December, 1981]

REFERENCES

${ }^{1}$ E. Wenkert, K. A. H. Adams, and C. L. Leicht, Can. J. Chem., 1963, 41, 1844.
${ }^{2}$ E. Winterfeldt, W. Krohn, and H. Preuss, Chem. Ber., 1966, 99, 2572.
${ }^{3}$ E. Winterfeldt and H. Preuss, Chem. Ber., 1966, 99, 450.
${ }^{4}$ J. A. Elvidge and P. D. Ralph, J. Chem. Soc. C, 1966, 387.
${ }^{5}$ J. W. Lown and J. C. N. Ma, Can. J. Chem., 1967, 45, 953.
${ }^{6}$ R. M. Acheson and J. D. Wallis, J. Chem. Soc., Perkin Trans. I. 1981, 415.
${ }^{7}$ A. F. Cameron, N. J. Hair, N. F. Elmore, and P. J. Taylor, Chem. Commun., 1970, 890.
${ }^{8}$ D. W. Dunwell and D. Evans, J. Chem. Soc. C, 1971, 2094.
${ }^{8}$ H. L. Yale, B. Toeplitz, J. Z. Gougoutas, and M. Puar, J. Heterocycl. Chem., 1973, 10, 123.
${ }^{10}$ S. Toppet, E. Van Lock, G. L. Abbé, and G. S. Smets, Chem. Ind. (London), 1971, 703.

11 T. A. Bryson and T. M. Dolak, Org. Synth., 1977, 57, 62.
${ }^{12}$ E. Winterfeldt and J. M. Nelke, Chem. Ber., 1968, 101, 2381.
${ }^{13}$ R. M. Acheson and M. S. Verlander, J. Chem. Soc. C, 1969, 2311.

[^0]: ${ }^{a}$ Spectra measured at 60 MHz for solutions in CDCl_{3}. Coupling constants (J) are in $\mathrm{Hz} .{ }^{b} 300 \mathrm{MHz}$ Spectrum. ${ }^{\text {c }}$ Assignments could be interchanged. ${ }^{d}$ Apparent J 's in secondorder spectrum. ${ }^{6}$ Measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}{ }^{f} 90 \mathrm{MHz}$ Spectrum. - Disappears on shaking with $\mathrm{D}_{2} \mathrm{O} .{ }^{n}$ Further splitting. Does not exchange on shaking with $\mathrm{D}_{2} \mathrm{O}$.

